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Resumen

Este trabajo modela un esquema de proyeccion de densidad de inflacion que se
aproxima a la conducta de las autoridades de politica monetaria en referencia
a la determinacion de parametros como el punto modal, la incertidumbre y Ia
asimetria de la densidad de la proyeccidon de inflacion.

El esquema combina la informacion a priori que manejan las autoridades de
politica sobre los parametros en cuestion con aquella obtenida de técnicas
paramétricas de estimacion de densidad usuales utilizando teoria bayesiana.
La combinacion se basa en las ganancias informativas de las autoridades de
politica que obtienen a partir de los ejercicios de proyeccion. La evaluacion se
realiza por medio de la teoria de informacion.
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Abstract

This paper models an inflation density forecast framework that closely
resembles policymakers' actual behavior regarding the determination of the
modal point, the uncertainty and asymmetry in inflation forecasts.

The framework combines the prior information about these parameters
available to policymakers with a standard parametric density estimation
technique using Bayesian theory. The combination crucially hinges on an
information-theoretic utility function gain for the policymaker from
performing the forecast exercise.
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INTRODUCTION

The purpose of this paper is to build a methodology to obtain marginal inflation density
forecasts. The approach used involves estimating a parametric inflation density forecast
where uncertainty, asymmetry and central tendency profiles are derived mainly from the
exogenous variables through the use of a forecasting model.

The estimated parameters are combined with policymakers' prior views through an explicit
Bayesian approach. The prior views encompass all other factors of risk and uncertainty that
may strike at the inflation forecast. The formulation postulates that policymakers weigh
their confidence in both their prior beliefs and their model via a utility function of the sorts
used in information-theoretic design as proposed by Lindley (1356).

This is a more realistic way of combining prior beliefs with model-based density forecasts.
The approach is particularly important in environments where macroeconometric
formulation of models is hindered by measurement errors and poor data availability'.
Nevertheless, even in stable and developed countries with quality data rich environments,
prior inputs are essential.

The chapter proceeds as follows: Section 2 outlines the density forecast framework,
Section 3 illustrates the methodology with a simple example for forecasting Peruvian
inflation and finally Section 4 draws conclusions. The appendix contains technical
derivations.

1. DENSITY FORECAST FRAMEWORK

The forecasting literature has recently turned the focus of its attention away from point
forecasts towards density forecasts’. The reasons for the need to provide complete
representations of probability distribution lie in the shortcomings of the certainty
equivalence principle in a world characterized by asymmetric risks. This is particularly
relevant in the fields of financial risk management and modern monetary policy where
decision theory plays a substantial role.

Some central banks. like the US Federal Reserve or the Bank of England, have a long
tradition in producing macroeconomic point forecasts. Only recently, the Bank of England
pioneered the presentation of density forecasts by means of fan charts. Since then, a

1. Thisis the case in most emerging-market economies.
2. SeeDiebold et.al {1999) and Tay and Wallis (2000)
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number of inflation targeters {ITers) have published density forecasts with varying degrees
of detail. Twelve of 21 ITersreqularly publish such fan charts’.

Leading density forecast central banks’ have favored the use of specific parametric
methods to construct their density forecasts. The parameters governing forecast densities
directly control for uncertainty and the asymmetry of the distribution. This is the approach
taken in the next subsection.

The role played by models in forecasting has been recognized by academics and
practitioners alike. In a recent survey of central banks practicing IT (Schmidt-Hebbel and
Tapia {2002)), all 20 of the banks surveyed refer to the use of some kind of model. The key
point here is that most central banks, especially ITers, endorse the use of a core forecasting
model in helping to center policy discussions within the bank.

However, the use of models in forecasting does not mean that subjectivity is filtered out in
the forecasting process. A point mentioned in the Schmidt-Hebbe! and Tapia (2002) survey
is that in most central banks published forecasts are a "balanced combination” of technical
forecasts and the views of decision makers. The inclusion of subjective approaches to
macroeconomic forecasting within central banks is also recognized in Sims (2002) and
Goodhart {2001).

Papers like those by Hall and Mitchell (2004a, 2004b, 2005) suggest a powerful method for
forecast combinations using in ways that incorporate subjective forecasts. This
combination hinges on forecast error minimization. Instead, this paper proposes a
methodology based on the interaction between the policymaker and those producing the
forecasts. This involves central bank staff undertaking simulations using a forecasting
model, with policymakers inputting priors with regard to parameters that reflect
uncertainty, the risk balance, and baseline forecast values.

1.1 The parametric density forecast

The economists at a central bank implement a forecasting process at time t with respect to
an inflation sequence up to horizon H. This sequence is generated by a forecasting model
and is denoted by’ {ﬁS}H

s=t+1

3. Inalphabetical order: Brazil, Chile, Colombia, Hungary, Iceland, Israel, Norway, Peru, South Africa, South
Korea, Sweden, Thailand, and United Kingdom. In Fracasso et.al (2003), Israel appears as not publishing a
fan chart because, exceptionally, the inflation report under assessment lacked one. Colombia is not
considered in their sample due to the «limited information» available.

4, For the Bank of England, the references are Britton et al. {1998) and Wallis (2003). For the Riksbank, the
reference is Blix and Sellin (1998).

5. Hatted variables are forecasts of either exogenous or endogenous variables. In the case of the instrument
setting, it refers to the stance assumed by the policy maker.
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=M (Y, X;;0.1) fors = t+1, t+2,..H [1]

in equation [1], Y,denotes the known history of endogenous macroeconomic variables y,
in the model (including inflation 7). Formally, Y, ={y, ... V..n}

This model-based forecast is conditional upon various factors that can be assumed or
induced in the process. These factors are X, , 6, and /,. The first denotes the history and
likely future course of the exogenous variables: X, = {X,,, .« X, . Tppq o oy 3, 8
denotes the set of parameters that describes the particular economic model in use. This set
of parameters is included in the broader set of parameters © that defines model
uncertainty. The last factor, /, denotes the history as well as the particular stance of the

central bankinstrumentassumed attime t:/,={i,_,, ... iy, iy, }

X

Model M is sufficiently general and need not be explicit as it may correspond to a rationa!
expectations equilibrium solution. | make the following definition:

. L . ~ H . L

Definition 1 A central forecast® is an inflation sequence {Tes},_,,, obtained by conditioning
the model to: (a) the most likely sequence of exogenous variables within the forecast
H

horizon {x.}_ .. (

b) parameter values 6_and (c) the monetary policy instrument setting l;
Also, the central bank economists involved provide a technical assessment of risk and
uncertainty about the inflation forecast. This relies on random realizations of exogenous
variables from suitably calibrated probability distribution functions. The random draws
take into account a chosen parameterized standard deviation, skewness, and the «most-
likely» sequence of exogenous variables. The parameters of these probability density
functions reflect the historical estimates made by technical staff as well as the subjective
butinformed view of sectoral experts.

Among the various probability density functions that are suitable to perform random draws
are the Beta and the Split Normal. The latter is used intensively by Blix and Sellin (1998),
Britton et al. (1998) and Vega (2003). These two types of distributions are useful because
their parameters illustrate the distributional characteristics that matter most in a density
forecast, a central point, a measure of dispersion and skewness.

By performing simulated histories of exogenous variables within the forecast horizon one
can determine alternative trajectories of inflation. Evaluated at each point in time within

6. Inthisdefinition, the subscript c denotes both central forecasts or assumed central values.
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the forecast horizon, the different inflation points originated in the simulations can be
hypothesized as coming from a generic probability function. Determining the explicit form
of the inflation forecast probability distribution function (pdf) that results from this
exercise is hindered by two obstacles: (a} the mapping from the exogenous variables to
inflation implies a solution like equation [1], which can be highly non-linear; and (b) even if
we can establish the exact form of the distribution, communicating it to the policymakers
would not be easy. One way to circumvent the problem is to assume a parametric form for
the distribution function that serves two purposes by being at once a good approximation
to the true pdf while providing a8 communication strategy easily grasped by the
policymaker. The Split Normal distribution is a good candidate for the assumed pdf, since its
parameters are easily communicated in terms of a straightforward balance of risks.

Definition 2 A model-based parametric inflation density forecast is a sequence of
parameters {Kc,s }:m that describes a probability density function of the inflation forecast
atevery point in time s. These can be obtained by a likelihood estimation procedure assuming
the Split Normal distribution and using the simulated data.

Henceforth, | concentrate on a relevant horizon H dropping time subscripts. After S
number of stochastic simulations on the exogenous variables are performed, | obtain a
mapping from data conditional on the model parameters and the instrument setting to
object w.
s
({X Ve 0.l)—ow (2]

The variable @ contains the elements which both the econometrist and the policymaker
care about’: the inflation forecast at horizon H, and the three parameters that underlie
the policy discussions. | group these three parameters in the vector A = {m, o' v)
with y as the modal point’, o the uncertainty measure and y the skewness of the
distribution of the inflation forecast. These three parameters precisely define the Split
Normal SN (m, o7, v ). This distribution collapses into a Normal N {m, o) whenever the
skewness parameter equals zero.

The parameter yvaries on the range (-1,1) and is closely linked to the balance of risks made
at central banks (see Appendix B). Specifying win a compact way

o = ({m}_y, A) (3]

7. Observe that the parameter © as well as the instrument may remain constant or vary exogenously along
the simulations.

8. When risks are asymmetric, there are three measures of tendency that central banks can look at. In
practice, central banks tend to pay more attention to modal points. See Goodhart (2001) and Vega
(2003).
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We treat w parameters in a Bayesian context’ and characterize its posterior probability
density conditional on all the information acquired after performing S simulations of the
model conditional on all the given factors Q (note that Sitselfis a conditioning factor)

p(@Q)=p(AlQ)p((n1is|AQ) (4]
where

S

Q) is the given information set Q = {{Xr }j=1,

Y., 1}

p(A | €2)is the prior density elicited by the policymaker, and p({n}f=1 [A,Q) is the probability
of the simulated inflation forecast data given the information and the parameters of interest.
The likelihood principle implies that this probability is equivalent to the likelihood of the
parameters given the simulated data and the information set: L (Al{n}f=1 Q).

Ourinterestis todraw probabilistic judgments of the inflation forecast distribution, and
therefore we need to find the posterior conditional distribution of the parameters. Thisis
achieved by making use of Bayes' theorem

_p(AIQ)L (Alimi,. Q)

Al{mys,, Q)= (5]
p( ! T Jj=1 ) p({ﬂ:}f:, |Q>

Given that both, the prior distribution and the likelihood are known parameterized
functions, the posterior distribution can be determined explicitly. Furthermore, by holding
constant a pair of parameters, | can determine the conditional distribution of the remaining
parameter.

1.2 Elicitation of the priors as the outcome of policymakers views

Through the outcome of the model-based density forecast, poficymakers form their views.
These take into account other forms of uncertainty not included in the forecast, including
model-uncertainty, measurement errors and others. It is therefore an internal operational
task how best to extract these views and to translate them into tractable distribution
functions.

For our purposes, we assume that the first subjective view is that the three parameters are
independent random variables, so that the joint prioris

A1) = p(0® 19)p(¥ Q) p(m | Q) 6]

9. Namely, it is itself a random variable.
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a. Prior for uncertainty parameter ¢

Following the literature (Bauwens et.al (1999)), we assume that &” is driven by the Inverted
Gamma-2 distribution iG,(a,b). The parameters (g,b) are extracted from the policymaker.
This distribution has support <0,00> and its parameters can be specified using the two
moments and the mode of the distribution as guidelines:

E(ozl.)= o fora > 2
a-2
and:
2 2
V(c?].)= [ ] fora > 4
a—4\a-2
while the mode is:
b
mode (6’ |.)=
( l) a+ 2

It can be observed that the mean is always higher than the mode, by taking the estimated
63 in Definition 2 as a reference point, possible values of b and @ can be evaluated by
weighing the resulting mode, mean and variance.

b. Prior for skewness parameter y

For the skewness parameter, we need a distribution with bounded support. We assume a
slight transformation of a Beta distribution, calling this E(c,d). This allows v to vary in the
interval (-1,1). To do this, we make a transformation of a random variable z lying on the
interval (0,1) with a Beta distribution B(c,d) (the transformation applied is y = 2z-1). The
first two moments are defined as:

c—d
E(l)=
and
4cd 1 Y
4 )= —
(1) (c+d-Nlc+d
with mode
c—d
mOde(Y|)=m‘
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c. Prior for mode parameter m
We impose a non-informative uniform distribution for the mode

p(m|a,,b,) o constant (7]

1.3 The posterior distribution
Given the Split Normal likelihood assumption”, the kernel of the joint posterior distribution
of the three parameters of interest is"

p(A {1}, 9) o (3 (5 (07 % exp ()

N (8]

2
- m '

(0.2)2 S, n—m 2 s
——t—| exp|3! +
-+ it~ P2 ,_Z,[c,h— ] ,=;;1[0 J1+7
From this joint pdf, we obtain the posterior conditional distribution of 6°. As expected, this

distributionisalso an Inverted Gamma-2:

~(0+N+2)

P Ivmm,02) (07) % e (1) 0

202

where
S, S

¥(m,) = Z (n{__;n i

i=1 i=S;+1

The other two relevant conditional distributions are given by:

S S 2
p(m | v, 0% (m) ,Q)= exp [;-ULZ{Z (15,_—: 2, Z (Q}y’") H [10]

i=1 i=S1+1

and

S

P m e m,9) = (2 (7 (s - )

D> ("::2)2”

i=51+1

S1
exp [;;’z {21 (=
P

10. See appendix [B] for details about this distribution.
11. Inflation data refers to simulated forecasts at a fixed horizon t+H.
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The conjugacy of the prior distribution of * allows us to express the conditional moments
from the posterior from an inverted gamma distribution. The moments are: iG, (‘”5 STa7h)

T2 ' 8(mA)+b
2 o 2
E(0%].)= — - for semays > 2
B(m,y)+b
and
2
2 2 % 2
V(O' |)= PR— FR— for B—(m,7)+b>4
B(m,~)+b B(m,~)+b
while the mode is:
a+s
2 _ 2
mode (0' | ) = 2—+2
B(my)+b

From this explicit representation, we observe that as the sample size increases, the
posterior mean and mode would collapse to the model-based estimates. In that case, the
prior view has a small effect on the posterior outcome. In econometric estimations a larger
sample size is always good because it improves the model-based information. The context
here is rather different; it is based on the willingness of a Bayesian policymaker to learn
about the properties of the inflation forecast from a general perspective as opposed to a
non-Bayesian econometrist who wants to learn the properties of the model-based forecast.

1.4 The choice of sample size as an information theoretic design problem
In the proposed methodology, the sample size Sis a choice variable as well. Ifa large enough
sample size is considered, the prior view of the policymakers becomes useless. On the other
hand, if the sample size is small, then the model-based estimation becomes less accurate
and the simulation experiment therefore suffers from being informationally poor.

Policymakers need to weigh the information provided by the model against the prior beliefs
they may hold. In practice, this may seem complex as it is tied to the subjective beliefs of the
policymakers coupled to the out-of-model information that they may possess.

In such circumstances, the information-theoretic approach”” common in the field of
«experimental design» seems plausible. What does the experiment the policymaker
performs consist of? In our view, it is in updating the policymaker's prior beliefs about the

12. This view was proposed by Lindley {1956). Applications of Lindley's approach are found, for example, in
Ryan (2003), Clyde (2001), Parmigiani and Berry (1994), Chaloner and Verdinelli {1995) and Miiller and
Parmigiani (1996). Most of these applications pertain to the design of clinical experiments.
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inflation forecast modal point, uncertainty and risks using a forecasting model provided by
econometricians. The outcome of this updating process depends crucially on the simulation
sample size under evaluation.

The choice of sample size S is made so that policymakers maximize their expected utility
resulting from the experiment. In other words:

S = arg mox {KL(S)- XS} [12]

This expected utility of experimentation with sample size Sdepends on two factors: a) the
Kullback-Leibler (KL) divergence between the posterior and prior distribution of the
parameters KL(S); and b) the linear loss function A. The KL number gives the value of the
information provided by the forecasting model used™. The loss term is rationalized by the
unwillingness to disregard their priors'”®. So, as the sample size increases, the prior of the
policymaker is downweighted and has reduced utility for the policymaker who considers
his/her priors are indeed important. In this case, the utility parameter A is the degree of
importance of the prior in the overall utility function™. The KL divergence number is
defined as:

_ p(AITLS)
KL(S)= {fn log[W]p(HMS)deA [13]

Where H:{‘K}/i1 is the simulated inflation data of size S, p(A)is the prior distribution of
the parameters and p(A|1L,S) is the posterior distribution.

2. AN EXAMPLE

In order to provide an example, | use a simple ad-hoc univariate model” for quarterly
inflation, estimated using ordinary least squares”. We run the inflation rate at quarter t
against the following regressors: the exchange rate depreciation at lag 3 (Ae, ), GDP
growthatlag2 (g,,) the meaninterbank interestrate atlag 1 (J,,), the mean three-month
Liborrate atlag 3 (i) and the terms-of-trade growth at lag 4 (Atot, ).

13. KL{S) is increasing in S and concave. See Lindley (1956).

14. These priors might indeed not be correct ex post and as studied by Bigio and Vega (2006); they are
influenced by their fears and uncertainties about the driving forces in the economy.

15. Acanalso be interpreted as the inverse of policy makers' confidence in the model.

16. The univariate model is used only to facilitate exposition. In practice, structural models, such as those
developed in Lugue and Vega (2003) and by Llosa et.al. (2005) for Peru, should be used.

17. We use data from Peru. The Central Bank of Peru has recently adopted the Inflation Targeting framework
(January 2002).
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™, = 0.69m,, + 0.24Ae,, + 0.23g, ,— 0.30i,,+0.55/, , + 0.66Atot, ,+&, [14]
(9.23) (3.58) (3.06) (- 1.95 (1.72) (1.70)

The estimation™ is conducted on the basis of data between the first quarter of 1994 and the
second quarter of 2003. Except for lagged inflation, all the variables on the right-hand side
are considered as exogenous. Hence, to start producing the density forecast we need to
construct a baseline scenario and uncertainty and risk profiles for the set of exogenous
variables: (Ae,, g, i,, iy, Atot,). In particular, | assume the following distributions:

Table 1
Distributional assumptions for exogenous variables at the end of the forecast horizon
Exogenous variable Balance of risk  Distribution Mode o
Libor rate upside 70% Split normal 3.57 1.2
Nominal exchange rate percentage change upside 55% Split normal 0.00 10.6
GDP growth upside 60% Split normal 3.90 8.3
Terms of trade growth neutral Normal 0.5 4.9

In Figure [1] we show the historical, central scenario and the 90 per cent central prediction
interval for the exogenous variables over the forecast periods. The asymmetry as well as the
uncertainty increases linearly until it reaches the values specified in Table [1]. In each
forecast period, | also consider random realizations of the unforecastable shock €,, drawn
from a normal distribution N(0,0.3).

This last feature is important for two reasons: first it makes the first-period-ahead inflation
forecast random given that all the exogenous determinants are predetermined for this
horizon. Second, it allows the inflation uncertainty to increase even in the absence of
uncertainty about the exogenous variables.

To complete the conditioning factors, we also need to assume a particular monetary policy
setting within the forecast horizon. in this case, we consider a constant-interest-rate
forecast with the rate held at 2.75 per cent over the forecast period.

The inflation density forecast is then achieved by estimating the parameters of an assumed
split normal distribution SN (m,s’~) for the simulated sample of size” S, for each forecast
period.

18. In equation [14] the lag structure minimizes the sum of squared residuals. As usual, the t-values are in
parenthesis.

18. In this step, the sample size S, should be as large as possible. The objective here is to obtain the most
accurate distributional representation originating from the forecasting model alone.
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An important conclusion emerges from this exercise: notwithstanding that exchange rate
depreciation, GDP growth and the Libor rate all show considerable asymmetry® (especially
at the end of the forecast horizon), there is no build-up of asymmetry in either the quarterly
or year-on-year inflation measures. In Figure [2] we show the estimated densities at each
of the eight forecast periods, aiong with the estimated parameters; m, o', and~. The gamma
parameter is close to zero in all periods.

There are two main reasons why the increasingly asymmetric nature of exogenous variables
does not pass on to inflation, namely the lag structure and the interplay between the
variability versus asymmetric forces. With respect to the lag structure, as the asymmetric
exogenous variables affect quarterly inflation with some lags, then full asymmetry is not
transferred to inflation at the end of the forecast horizon. As regards the relation between
variability/asymmetry, it is known that when the variability of inflation increases the
asymmetric forces that affect inflation are dampened (see for example Blix and Sellin
(1998)). Inflation variability grows because the exogenous variability increases linearly and
because the persistence of inflation (since it depends strongly on its own lags) tends to
exacerbate all the sources of inflation uncertainty, even those which come from the
inflation shock itself.

The estimated mode from the simulations is quite different from the one calculated using
only the central scenario values of exogenous variables (the modes). There is an upward bias
(See Figure [3]) in both the quarterly inflation and the year-on-year inflation rates. The
reason for this is that at the end of the forecast horizon, the simulated distribution is quite
symmetric around the mean. The mean is the central tendency that is preserved in both the
point and density forecast.

Once the results of the simulation are known, | proceed to introduce the information
provided by the policymaker. To do this, | concentrate in forecast horizon H= 8. We need to
assume a prior distribution for the set of parameters A = (m, o’, ~). We take the
distributional assumptions outlined in subsection 1.2, namely the mode follows a uniform
distribution; m~U(m,,, m,;,,) with parameters m,, .= -0.22 and m,;,= 5.78 such that the
distribution is centered in a year-on-year inflation rate of 2.78 percent.

The uncertainty parameter follows an inverted gamma-2 distribution: o'~iG,(a,b). In
order to find the parameters, we may consider that the estimated & from the simulation
step is too low. Policymakers may consider that there are other factors that necessarily drive

20. In Figure [3] in the appendix the estimated mean differs from the modes of the asymmetric exogenous
variables. In Figure [4] the asymmetry parameter y for the exogenous variables becomes larger towards
the end of the forecast horizon.
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forecast uncertainty to a higher level. For example they may assume that Ep,,a,(oz) =195
and modep,w,(oz) = 1.8.Thisimplies the corresponding parameters (a,b) =(38,72).

The asymmetry parameter follows a beta type of distribution considered in the previous
section: y~B (¢.d). In this case, policymakers believe that the inflation forecast at horizon
H will have an upside risk, as opposed to the model-based case which considers a slight
downside risk. Let us suppose that the mean priorgammais Ep,,o,(y) =0.3 (whichisclosetoa
60 percent upside risk) and that they believe strongly about this asymmetry V_._(y)=0.006.

prior
This implies parameter values (c,d) = (92.857,50).

Before combining the prior information given by the policymaker, it is necessary to
establish the size of the sample to be used in the Bayesian procedure. This sample size is
obtained from solving the problem in equation [12]. Calculating the utility measure
requires us to obtain the KL divergence number via some numerical integration procedure.
In Appendix D, | follow Ryan {2003) by using a MCMC estimation. The optimal value S*
depends on the parameter \. A small X (about 0.007) is related to a large sample size (about
164); a «large» X\ (around 0.017), generates a sample size of about 33. Hence, we interpret
the sample size as the degree of confidence in the prior. In this example, we assume X =
0.01.Therefore the optimal sample size is S*= 120 (see Figure [7]).

Next, | sample from the Bayesian conditional posterior distributions. The corresponding
mean values are shown in Table [2] where the posterior and prior distributions are shown
graphically in Figure [8]).

Table 2

Mean values of the parameters under the prior distribution, the ML estimation and the
posterior distributions

Prior Mean Model-based Estimation Posterior Mean
Mode m 2.78 3.03 2.75
Uncertainty o 1.95 0.83 0.78
Risk Y 0.30 -0.05 0.34

The distributional means of the prior and posterior turn out to be very close to each other
except for the uncertainty parameter 6”. The model-based estimate of uncertainty is low,
while the prior belief about this parameter is too high relative to the model. Also, the
model-based estimate of the asymmetry is slightly negative (-0.05) as opposed to the prior
belief which posits a strong upside risk (y=0.3). It seems that the model strongly rejects the
combination of high levels of uncertainty and sizeable upside risks as defined by the prior.
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Thus, in terms of the posterior, the prior view of the policymakers is taken into account for
the modal and the risk forecasts, yet it is not the case for the uncertainty parameter
estimation. In fact, the posterior calculation hints that a lower uncertainty seems necessary
in order to «make roomn for a high value of asymmetry provided in the likelihood”'.

CONCLUSION

This paper contributes to the understanding of how central banks conduct forecasts as part
of monetary policy making. It focuses attention on Bayesian policymakers who hold or
develop prior views on key features of the inflation density forecast. Policymakers interact
with technical staff responsible for running the macroeconomic model-based density
forecast.

In reality, neither the prior views nor the model-based forecast are true per se. Prior views
are subject to human imperfection while models are always false. However, policymakers in
fact use both types of input to make quantitative inferences about their forecasts.

In the approach adopted here, policymakers weigh both the prior view and the information
provided by the model via a utility function advocated in Information Theory. The utility
function considers the trade-off between the importance of policymakers’ priors and the
«faith» in the core forecasting model. If the model commands full «faith» then priors &re
irrelevantand vice-versa.

A further application of the approach developed in this paper would be to reverse engineer
this density forecasting process to extract and thus to find a metric on the degree of
importance of judgment relative to pure objective model-based forecasts.

21. This particular result does nat always hold. It depends on the relative prior variances of the parameters. If
policy makers are highly confident about their prior view of uncertainty, then the distributional variance
isin fact very low. Therefore, the resulting posterior might be closer to this posterior.
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Appendix A: Inflation forecast prior distribution

A.1  Prior for &

In the main text we assume that o” follows an Inverted Gamma 2 distribution with
parameters (b, a)

ol

p(e*1)= (DEIR?) (67) T exp(5) (1]
where
E(oz|)_ for a > 2
a-
and 2
V(Gzl-): 2 [ o ) for 0 > 4
a—-4\a-2
while the mode is
b

A.2 Prior for ¥

We start by assuming that a random variable z follows a Beta distribution with parameters
(c,d)

g(z]cd)y= SN, " for o<z <1

RGRT)
c
E(z|Q)=——
(l ) c+d
and
4cd
ViyiQ)=
(c+d—-1) (c+d)
while mode
mode ( 1)_l
Tk c+d-2
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Then we defineyin terms of the following transformation
Y =2z-—1

Hence, the prior distribution of y can be expressed as
PY1)=g(@z(y)lcd)|E

As a result, the prior distribution of vy is

plrled)= g5 (7 () for —1<y <1 [A2]

A.3  Priorform

As for m, we assume a uniform, non-informative prior. The exact determination for this
prior is inconsequential for the Bayesian posterior sampling. However, it is used in the
sample size determination since | require sampling from the priors. Hence, | assume

m ~ Uniform (m m

high)

low 1

p(m|)y= —— for Mgy <M < Myep [A3]
Mpigh = Mgy

Appendix B: Model-based density simulation and estimation

B.1 Fitting the simulated data

I define a Split Normal pdf for the data with parameters (m,c° v ) in the following way

X—m

, .
Vo2 (fiy- it7) ¢ (400—7)) rxsm

f(xlm, czy) =

2 xX—m .
(- ) 07ty otherwise
where ¢ (2) = 2= exp(-2%)

Given a simulated sample {x}s 1, We can sort the data in ascending order and split the
ordered data {X}s 1in two sub-samples
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S,={% 1% <m}andS,={%|%2m}

Let S, and S, - S, the total number of elements of sets S, and S, respectively, then the
likelihood of the sample is given by

L(xIm oY) = (Jf_—yz_"jr) CXP[T]{Z (m) 5 (\/1—+v)>2H (A4]

While the log-likelihood is
L (xImo%y)=S; log (ﬁ)—%’log(ﬁ’)—s, log (y1-v + 1/1+y)+
1 2( ) 202 2 J'+_)

Estimation of the parameters requires the computation of the first order conditions of the
ikelihood problem:

For the uncertainty parameter we have

aL (xIm,c%y) S
) s (i (5 o

51
~2
0’ = ST(““'?) . (X - 1+y) Z (X m [A5]
i=1 i= 1+‘l
For the risk parameter we find
__ _ S5tk Ji=y-JY
BYL(XGY'm) == ()
5 Sr X
1 2 1
- 262(1-7)? z (x—m)” + 202(1+'{)2 2 (x—m)
i=1 i=5+1
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which collapses to the following equation in the estimators:

S

S x-@)Y ¥ (x-m) J—

i=51+1 _ =1 _ a2 =~ — o 1-y-1+y A6
(+7) (S AA AL () e

For the mode parameter we have the expression:

S St
S (x—-m) '§1(x—m)
9| (xioly,m)= = 5 -
e M= Gt ey
S 5 Sr St
x=¥m X x— ¥ m
i=1 i=1 =541 i=S1+1
(1-v) (+v)
which is simplified as:
5 %r:
X
Zx i=Sp+1 S, S, - S,

m [A7]

(=77 TGy looq7 Taeay

Equations [B.5], [B.6] and [B.7] are soived to find the triple of MLE parameters

A= (Mo%Y)

Appendix C: The posterior distribution

C.1 The joint posterior. The joint posterior distribution is given by:

c-1 _ d-1 —(0+2)
p(A|{7I},Q)O([%] [12—Y] (6?) 2 exp(z%:z)

wn

i=1 i=5¢+1

2y 2 57 S mm N & omem
o] HZ (F) + 2 (T<:>)”
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In the main text we have determined the conditional posterior distribution kernel of o’by
fixing the other two parameters:

-(@+S"+2)

p(elvm {m,} @) (07) oo (7))

20

Where

o(mys) = {3 (550 + £ (550))

The implied posterior distribution of o is also a iG2 distribution with parameters.
(B(m,y;S)+b,a +S"). From here, itis straightforward to determine the mean of o° under
the conditional posterior.

, B(m y;S)+ b
£(0®].)  =—
post a+S =2

On the other hand, the prior mean was given by:

b
E(c?].) . =
( | )pnor a-2

While the fitted estimation with simulated data according to equation [A5] gives:

~2 _ B(myS")
Op = —<

Proposition: If, E (0°] .) pior > Gp, then £ (o7 Vprior > E (o] .)post > 62

Starting with the conditional: _b_ ~, 2(m¥%5)
2

{a) we post multiply and add the term b (a — 2} in both sides:
bS + b(a-2)> (a—-2)8 (m,y.;S)+b(a—-2)
b(@+5-2) > (a-2) (8 (m,v,;S)+b)

b 8(m,y;S)+b
a-2 a+S-2

§
N
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{b) we post multiply and add the term & (m, y; S)Sin both sides:
bS +8(m,y;S)S > (a-2)0(m,y;S)+8(m,g;S)S
S +8(myS))> 8(my;S)(a-2+5)

b+ (m,y;5) 8(m,y;S)

>
a-2+S S
The basic result when £ (0’2 by > th is:
prior
b b+6(m,y;S") B (m,y,;S")
—_ > T
a-2 a-2+S" S

As the simulated sample becomes large, the procedure impjemented here downweights the
prior; thus the simulated variance does not differ from the posterior.

The other two relevant conditional distributions are given by:

51 _m2 S = _mz
P(M1Y.0% M, Q) exp [5-0_12{21 ((nmy) ) )+25: (((:++H” ) )” [A9]

i=5+1

and

p(vimo’m,,, Q)

Y—H]c—1[1_y]d—1 2
2 2 Ji-v + J1+y

C.2 Sampling from the posterior

In order to make inferences about the posterior distribution of the parameters, it is
necessary to obtain samples from the three posterior distributions. The posterior
distribution of o is an inverted gamma-2 (equation [A8)]) and thus poses no problem.
However, the other two kernels (equations [A9] and [A10] are of unknown form. This calls
fora sampling procedure commonly known as Metropolis-Hastings within Gibbs sampling:
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The sampling algorithm takes the following steps:

o . 2

1. Initialize the parameters at an arbitrary value (mo' Go: Yo)
2 2

2. Generate a k,, -draw 62 ~p (o7 _ 17, m,.)

3. Metropolis step to get m update:

Consider the function from equation [A9]:

(i) = o6 [2.?12 [g (& m)) 2 (e )”

=541

(a) Calculateafunctionvalue: M, _, = ¢, (mk_1;0:,Y,(_,)

(0) Generate a candidate draw from: m; ~ m,_,+ cN(0,1) where cis an appropriate
constant.

{c) Calculate the corresponding function value: M, = cm(m;;of, Yeor)
. LM
(d) Calculate the ratio: p = min (M,;k_’,' 1)
{e) Draw a uniform random variable between zero and one p, = Uniform (0,1)

(f) if p, < p, make the candidate m; draw be the selected draw m,. Otherwise go back
to (a) and repeat the procedure.

4. Metropolis step to get y update: Considering the function from equation [A9]:

N
Cy(y; ol m) - [Y +1

~flgesn ]

+1

And repeat (a) to (f) as in Step 3.
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After a number of draws, the sampling scheme is equivalent to sampling from the true
posterior distributions outlined above. In the example developed in the paper, the number
of total draws amounts to 50,000 from which, the first 5,000 were exciuded.

Appendix D: The optimal design of the sample size

As stated in the main text, the optimal sample size design maximizes the expected utility:

S* = argmax {KL(S) - xS} [A11]
Sen

Where the KL divergence number is defined as:

AITLS
L(s)= [ [ log {%} p(ILA|S)dTIdA

Where [T= {115}].5:1 is the simulated inflation data of size S, p (A) is the prior distribution of
the parametersand p (A |T1, S) is the posterior distribution.

Following Ryan (2003), it is straightforward to show that the KL information number s
fflog[ H|AS)] p(TLA|5)dTIdA~ [ log[ p (IT|S)] p(IT| S)dI

Hence, this number can be estimated by a MCMC procedure that does not rely on sampling
from the posterior distribution of the parameters. The estimator is:

N
$)= 3 X {los a4, )1~ og (11, 15)]} A12)

Where (II;, A;) for i=1,.., N isa sample from p (I, A | S) and p (I1,] S) is an estimator of
the marginal density of the data p(I1,| S). The dependent pair (IT;, A;) drawn from p(IT, A |
S)=p(IT | A,S) p(A), is obtained by first drawing A from the prior distribution p(A) and
then ITfrom the conditional distribution p(I1;,|S).

The estimation of the marginal density of the data is obtained by an importance sampling
based estimator as in Ryan (2003):

M
B 1S)= -3 p(IL|A},S) [A13]
M &
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Where {A7} fori=1,..,Nand j=1,.., Mare Nsamples of size Mdrawn from the prior p(A)
obtained independently of the N pairs (I1,, A,) drawn before.

The sampling algorithm to get the estimator [A12] follows exactly that of Ryan (2003)

1) Generate a large sample of size N, from p(A), {A.... Ay}

2) Generate an index set for MCMC estimator [A12] as a size N < N, random sample
without repetition of the integers 1 to N,. Call this sample {out;}" .

3) Generate index sets for importance sampling estimator [A13] as N independent size N
< N, random samples without repetltlon of the integers 1 to N,. Call these samples
{In”}l , fori=1,..N.

4) For k=1,.,n,, let S represent n, designs to be compared. Generate one dataset II,,
from p(IT| A, S,) foreachk=1..., n,andeachi=1,..,N.

5) Fork=1,..,n, compute

/\M N M
KL %z KL, ( [A14]

Jj=

~—~M 1 M .
KL; (S¢) = log [p(IL; | Aout,-'sk)] - log [‘M‘EP(H,‘ [ Aijls)]

j=1

To implement the estimation, we considered the following values: N, = 5000, N=1000,M =
100, and n, = 200. Also, we considered sample size higher than 30 via: S, = (k-1) + 30.

In figure [6], we depict the MCMC draws of KL, together with a smoothed version of it. The

smoothed version is combined with the loss term in [A11] to get the utility function shown
in figure [7]
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Optimizacion y simulacion dinamica de la especie carachi (Urestias agassit}

Figure 1: Forecast interval and modal forecast
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Figure 2: Estimated SN pdf's for the year-on-year inflation forecast.
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Figure 3: Central measures of tendency
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Figure 4: Evolution of the skewness paramater
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Figure 5: Evolution of the uncertainty parameter
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Figure 6: The KL divergence number (a.k.a entropy). The scatter plot is the estimation with

monte carlo variation. The line is a smoothed version
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Figure 7: The utility function of the policy maker as a function of the simulation sample size
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Figure 8: Prior and posterior parameter distributions
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